

IBM Tivoli Service Management
Products

Performance Test Best Practices
With Rational Performance Tester

White Paper

Document version 1.1

NOTICES

The information contained in this document is distributed as is, without warranty of any
kind.

This paper presents IBM® Tivoli® Service Management Products best practices for
performance testing with Rational® Performance Tester.

This document applies to the following IBM Tivoli Service Management products:

 IBM Maximo® Asset Management 7.1 and 7.5

 IBM SmartCloud Control Desk 7.5

 IBM Tivoli Change and Configuration Management Database 7.1 and 7.2

 IBM Tivoli Provisioning Manager 7.1 and 7.2

 IBM Tivoli Service Automation Manager 7.1 and 7.2

 IBM Tivoli Service Request Manager 7.1 and 7.2

© Copyright International Business Machines Corporation 2011. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

April 2012 Page 2 of 2

CONTENTS

Notices ..2

1 Importance of Performance Testing IBM Tivoli Service Management Products ...7

2 Defining Performance Benchmark Test Objectives...8

3 Defining Test Methodology..9

3.1 Defining Test Types...9

3.1.1 Baseline Measurements ... 9

3.1.2 Performance Load Tests .. 9

3.1.3 Stress Tests .. 10

3.1.4 Endurance Tests... 10

3.1.5 Sizing and Capacity Tests .. 10

3.1.6 Performance Tuning and Debugging.. 11

3.1.7 Batch Testing.. 11

4 Test Cases, Workloads, and Scenarios ..12

4.1 Test Case Development ..12

4.2 Workloads..12

4.2.1 Concurrent Users and Simultaneous Users ... 13

4.2.2 Real-time versus Virtual User Mapping .. 14

4.2.3 Think Time and Delay Time.. 14

4.3 Test Scenarios...15

5 Benchmark Test Environment Considerations ..16

5.1 Application Servers..17

5.2 Database Servers ..17

April 2012 Page 3 of 2

5.3 IBM Tivoli Service Management Products Build Administration Servers.17

5.4 Monitoring Considerations ...17

6 Test Development Essentials for Rational Performance Tester..........................18

6.1 Load Simulation ...18

6.1.1 Load Test Controller ... 18

6.1.2 Load Test Generators... 18

6.1.3 Load Test Data ... 18

6.2 Recording a Test ...19

6.2.1 Before Recording.. 19

6.2.2 Workspace Settings.. 19

6.2.3 Recording.. 19

6.2.3.1 Caching... 19

6.2.3.2 Transaction names ... 19

6.2.3.3 Comments... 20

6.2.3.4 Entering search values ... 20

6.2.3.5 Saving two versions of the recording.. 20

6.3 Editing Your New Recording..20

6.3.1 Test Flow .. 20

6.3.2 Parameters ... 20

6.3.3 Correlating Values .. 21

6.3.4 Modifying Regular Expressions .. 21

6.3.5 Data Correlation References in Conditional Code.................................. 22

6.3.6 Removing Unused References... 22

6.3.7 Text Checks.. 23

6.3.8 Think Time and Delay Time.. 23

6.3.9 Secondary Images.. 23

6.3.10 Custom Code.. 23

6.3.11 Creating References... 24

6.3.12 Handling Maximo Page Sequence Numbers.. 25

6.3.13 Special Situations ... 26

6.3.13.1 When the pop-up window is recorded .. 26

April 2012 Page 4 of 2

6.3.13.2 When the occurrence of a pop-up is inconsistent......................... 26

6.3.13.3 When an error message box appears .. 27

6.4 Executing a Schedule ..27

6.4.1 System Clocks .. 27

6.4.2 Eclipse Settings .. 27

6.4.3 Agent Settings... 27

6.4.3.1 Multiple Agents on the Same Computer... 27

6.4.3.2 Settings Within the Workspace... 28

6.4.3.3 Settings on a Windows Agent Computer.. 28

6.4.3.4 Settings on a Linux or AIX Agent Computer... 29

6.4.3.5 Agent Selection... 30

6.4.4 Resource Monitoring... 30

6.4.5 Test Log .. 30

6.4.6 Statistics and Resource Monitoring Interval ... 30

6.4.7 Performance Requirements.. 31

6.4.8 Run Configurations ... 31

6.4.9 User Comments.. 31

6.5 Performance Results ...31

6.5.1 Custom Reports.. 32

6.5.2 Analyzing Performance Test Results ... 32

6.5.3 Comparison of All Time Ranges... 32

6.6 Other Workspace Issues ...32

6.6.1 Project Cleanup .. 32

7 Troubleshooting Performance Problems ...34

7.1 Performance Problem Determination ..34

7.1.1 Problem Determination Techniques ... 34

7.1.2 Problem Determination Tools ... 35

7.2 Monitoring the System...37

7.2.1 Monitoring Tools ... 37

8 Analyzing Results ..39

April 2012 Page 5 of 2

9 Rational Resources ...41

9.1 General ..41

9.2 Forum ..41

9.3 IBM Support...41

April 2012 Page 6 of 2

1 Importance of Performance Testing IBM
Tivoli Service Management Products
A common misconception is that performance testing of IBM Tivoli service management
products in a customer environment is not necessary, because the product has been
thoroughly tested by the IBM Tivoli Performance and Scalability teams, and the product is
initially configured to provide optimal performance when it is installed.

However, internal tests that a development organization performs might not reflect the
conditions in a production environment.

Internal tests focus on discovering defects, determining whether the product is scalable to
accommodate the largest organizations, and determining overall performance of each of
the applications. Customers who deploy IBM Tivoli service management products in a
production environment should not exclusively rely on the results of internal testing.
Instead, they should use the internal results as a guideline when determining the optimal
configuration needed to support the mix of applications, number of JVMs, number of users,
and number of transactions that are typical of the actual production environment.

This document provides guidelines for conducting performance tests of IBM Tivoli service
management products in a customer environment.

Four common reasons to conduct your own performance tests are:

 To validate sizing estimates for a new IBM Tivoli service management products
implementation.

 To ensure that IBM Tivoli service management products meet the current
requirements of the business processes and to document the performance of the
existing system.

 To ensure that IBM Tivoli service management products meet the business
demands for future growth, and to help the organization predict performance
bottlenecks.

 To analyze, tune, and debug current performance issues in production
environments.

Best Practices Is a Cooperative Effort

This document is the result of a cooperative effort between IBM Tivoli Performance and
Scalability teams and a core group of IBM Rational Performance Tester engineers. This
document was developed in response to customer requests. The collaborative effort is
ongoing.

April 2012 Page 7 of 2

2 Defining Performance Benchmark Test
Objectives
A well-defined set of performance test objectives is critical to the success of any
performance test project. Careful planning and consideration of all factors should be the
first step of all projects. The most common reason for failed projects is that too little time is
spent on planning.

Define the test objective with a set of business questions that are intended to be answered
by the results of the test. All further details of test design should be intended to answer a
specific business question.

The following are examples of some business questions that you should address:

 If this is a new deployment, will the architecture that is being deployed meet your
business requirements?

 If this is a new deployment, will IBM Tivoli service management products provide a
satisfactory response time, given your own requirements for a certain number of
concurrent users, performing a given number of transactions in a period of time, on
the hardware that you currently have in place?

 If this is a new deployment, which component is likely to be a bottleneck to overall
performance, for the combination of IBM Tivoli service management products that
you intend to run, and for the transaction volume and concurrent users that you
expect?

 If this is an existing deployment, is your existing hardware sufficient to provide
acceptable performance, for the expected number of transactions and concurrent
users? Or is new hardware or reconfiguration of existing hardware necessary to
provide acceptable performance?

If you are planning a new installation, or if you expect changes to your current IBM Tivoli
service management products environment, such as an increase in the number of users,
you should load test the entire application. Stress and stability tests are performed before
you configure the product for a production environment. However, this type of testing is not
always possible because of time, cost, or other constraints. Consequently, it is critical that
you identify the business questions with the highest risks and rewards and test accordingly.

Document the test objectives, including the business questions to address, in a project test
plan. When testing is complete, you should be able to provide concise answers to each of
the business questions in a test report.

April 2012 Page 8 of 2

3 Defining Test Methodology

3.1 Defining Test Types

The type of test that you perform should be determined by the business questions that you
ask. The following test types are commonly performed during IBM Tivoli service
management products performance test projects. Your unique business questions might
require additional testing.

3.1.1 Baseline Measurements

Perform baseline measurements before you run any other tests. Baseline measurements
consist of a single-user test that you run for several iterations. The purpose of this type of
test is to verify that the test is working as expected, and to allow you to identify aspects of
an application that are not performing well, even when only one user is using it. If an
application does not meet your requirements in this situation, the problems must be
resolved before you attempt additional tests with more users. You might have to
reconfigure both the hardware and the software to eliminate the failures.

After you complete a set of single-user baseline measurements with satisfactory results,
perform a “benchmark-under-load” test. In this type of test, your test script should simulate
a subset, such as 25%, of the total activity that you expect to see in the production
environment. As with the initial test, any problems with the performance of the application
must be resolved before you conduct additional tests with higher load levels.

In some situations, it is helpful to schedule a scenario with a single functional flow. One
such situation is when the performance testing coincides with delivery of a functionally
stable customization and you want to see how the customization performs before it is
included in a workload mix. Another situation might be when you have identified
performance issues during the mixed mode scenario. To isolate whether the performance
issues are from a specific functional flow, you might need to run single functional flow tests.

3.1.2 Performance Load Tests

After you complete baseline and benchmark-under-load tests, you can begin the full suite
of load tests. For these load tests, IBM Tivoli Performance and Scalability teams suggest
that you run at least five load points: simulate 50%, 75%, 100%, 125%, and 150% of the
expected system load. The five load points help you identify the “knee” of the performance
curve. You can test each load point as an individual test, or use the performance test tool
scheduling options to drive all five load points from a single test that presents multiple load
levels. There are advantages and disadvantages to each method. Allow each load point to
plateau and remain at a constant user-load/transaction rate for a period that is long enough
to make clear observations before scaling to the next load point.

The objectives of the load test are to measure the response times of transactions and to
verify that business requirements and service level agreements are met, under load
conditions. Load tests also can find defects in functionality that otherwise might not be
revealed. By monitoring the success and failure rate of transactions, you can determine if
the application is performing as expected, and you can identify bottlenecks that might
cause functional issues.

April 2012 Page 9 of 2

The design of your load tests is crucial to understanding test results and tuning the
environment for optimal performance. Poorly defined workloads and test approaches can
have dramatic effects on test results and lead you to false conclusions.

3.1.3 Stress Tests

Load tests focus on testing the performance of software using simulations that approximate
conditions of real users using the application. Stress tests focus on identifying the server
break points and how the application behaves when a failure occurs. Customized
deployments of IBM Tivoli service management products are good candidates for stress
tests.

In stress testing, you gradually increase the number of concurrent users until the server
breaks. Unlike load testing, you do not need to consider “think time” or browser cache
during stress testing. The duration of the stress test is not predetermined; you gradually
increase concurrent users to the point where all server resources are exhausted. You
identify the conditions that caused a failure by monitoring the server resources during
stress testing and analyzing system logs after the failure. Stress test results indicate
whether the system remains stable under extreme loads, or whether its performance
degrades or the system crashes.

Detailed results analysis with project architects and implementers should follow stress tests
because of the potential significant impacts to customer environments when a system
becomes stressed.

3.1.4 Endurance Tests

Endurance testing differs from load and stress testing. Endurance tests examine how the
application performs when running a significant number of concurrent users for extended
periods of time. The purpose of endurance tests is to identify memory leaks, performance
degradation over time, and overall system stability. Endurance tests are typically executied
over time periods that range from 12 hours to a week.

Key indicators to monitor during an endurance test are consistent transaction response
times, stable memory usage, stable CPU utilization, constant throughput levels, and
avoidance of server crashes.

3.1.5 Sizing and Capacity Tests

Sizing and capacity tests are important when the results of the tests are needed by
deployment teams to properly size new deployments and to determine whether the existing
environments can absorb anticipated increases to system load.

For IBM Tivoli service management products, the results of sizing tests are commonly
reported in concurrent users per JVM and as transaction rates per server.

You design sizing and capacity tests differently than you design standard performance
tests. It is important to design series of tests that focus on each tier as well as on the
individual components of those tiers. For example, to determine the maximum concurrent
users per JVM for a given workload, you must ensure that the JVM itself is the limiting
factor. One way to achieve this is to restrict the number of JVMs on a system so that the
JVM reaches capacity well before the CPU reaches its limitations. After the JVM
capabilities are determined, increase the JVM count so that it is no longer a bottleneck, but
the CPU could be. Continue to increase concurrent users until the CPU reaches 100%
utilization. At that point, the maximum number of concurrent users per CPU can be

April 2012 Page 10 of 2

reported. Continue this approach until all components of each tier have been fully
characterized.

In addition to the components and tiers, you can size the various combinations of IBM
Tivoli service management products with the same methodology. After you establish
characteristics of each component within each tier of each application, run integrated
testing of various applications to add another dimension to the results. This provides
additional data that you can use to estimate sizing “rules of thumb” as combinations of
applications are expected to be deployed.

3.1.6 Performance Tuning and Debugging

You can control bottlenecks through creative manipulation of the hardware resources on
the IBM Tivoli service management products system. For example, if you determine that
JVM memory is a bottleneck, it might be easier and faster to debug and tune if you start
only a single JVM in a server cluster. That way, a smaller load can recreate the problem.

If a particular use case is not performing as expected, it is often useful to test that use case
by itself under load to gain insight into the resources consumed and then pursue deeper
analysis. Restricting other traffic can make it much easier to review traces and logs.

For details about logging, tracing, and debugging, see the System Administrator Guide.

For the latest IBM Tivoli service management products tuning information, see the Best
Practices for System Performance 7x white paper.

3.1.7 Batch Testing

Batch testing refers to testing components of IBM Tivoli service management products that
are not interactive. Batch testing plays a vital role in the performance analysis of IBM Tivoli
service management products. It should not be excluded. Data loads during customer
deployments, integrations with outside vendors, and tools such as the Integration
Framework can significantly affect both the middleware and database servers.

Batch tests focus on system resource consumption of the server tiers and throughput
rates. If necessary, also consider response-time SLAs. In the test approach, clearly define
the type of records to simulate, the size of messages, and transaction feed rates. Mistakes
in design can cause results to vary significantly.

Batch tests typically do not use the standard performance simulation tools and typically
require some level of programming to develop. It is important to work with an implementer,
an architect, or someone that is familiar with the components that are to be simulated.

April 2012 Page 11 of 2

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/topic/com.ibm.mam.doc_7.1/pdf/mam71_sys_admin_guide.pdf
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb

4 Test Cases, Workloads, and Scenarios

4.1 Test Case Development

When you consider test cases for performance tests, keep the number of use cases to be
tested as small as possible. But you must ensure that the cases include the most
frequently used functions and the functions that present the most risk. The goal of the
performance test is different than the goal of functional testing. It often is not possible to
conduct performance tests that have the level of coverage that is in functional testing,
because producing performance test scripts from use cases can be time-consuming and
labor-intensive. Focus on testing the 20% of scenarios that are most frequently used.
Spending effort on the remaining 80% of scenarios does not typically yield considerable
performance improvement. The goal of the performance test script for a use case is to be
representative of the most common user flows, not to press every button or to activate
every option, as might be the case with functional testing.

If this is not the first performance test for the application, use previous performance
benchmarks and existing production data as input for comparing results from release to
release.

Structure logons and logoffs in the tests so that they match the way that they are used in a
production environment. If the end user typically logs on once in the morning and
maintains that connection throughout the day, the scripts should reflect that behavior. If the
end user typically logs on, performs some work, and then logs off, the script should reflect
that behavior. If you want a specific logon and logoff use case, add a script specifically for
that case, so those transactions can be controlled and measured by the workload mix.

4.2 Workloads

Developing a valid workload can be a challenge. The workload can usually be determined
from a combination of historical data from production systems, database queries of live
systems, and interviews with application support personnel. The workload is comprised of
two elements: the workload distribution and the workload rate. The workload distribution is
the percentage mix of all use cases in the test scenario. The workload rate is determined
by transaction rates; for example, as x number of transactions, or as a given type created
per month, and then estimated down to the peak hour.

It is not enough to know that 20% of your users create work orders. You also need to know
the rate at which work orders are created. For example, are 20 work orders created per
hour, or are 100 created per hour?

April 2012 Page 12 of 2

Sample workload distribution

Scenario Scenario description Weight factor
S01 Simple Search 20%
S02 Advanced Search 10%
S03 Simple Create 30%
S04 Advanced Create 20%
S05 Simple Close 10%
S06 Advanced Close 10%
 100%

Average Hourly Transaction Rates Peak Hour

S01 – Simple Search 2000

S02 – Advanced Search 650

S03 – Simple Create 900

S04 – Advanced Create 750

S05 – Simple Close 1700

S06 – Advanced Close 2000

Totals 8000

Sample workload transaction rates

It is possible to have multiple workloads during a test project, depending on the test type
and the objectives of the test effort. The most common workload type simulates the
concurrent users and transactions for a peak hour during the target production
environment.

When building test scenarios for execution, the number of concurrent users to be simulated
should follow the defined workload mix. Transaction rates per hour during the simulation
should correspond with the analysis done to derive the workload mix. The rates can be
reported as transactions per second per user, transactions per minute per user, or
transactions per hour per user.

4.2.1 Concurrent Users and Simultaneous Users

Knowing the correct figures for concurrent users and simultaneous users is vital to
performance testing an application. For testing, you need to distinguish between
concurrent users and simultaneous users. Concurrent users is the number of users that
have an active, but possibly idle, session with the application. Simultaneous users are
those that are actually doing work at a given time. The distinction is important when you
analyze results.

The terms "concurrent users" and "simultaneous users" are not rigidly defined. If you are
told that a Web site has 150 concurrent users, you cannot assume that means 150
requests are being processed at once. That would mean that 150 users were logged on
and actively interacting with pages on that Web site. In fact, many of them might be
reading the page, thinking, or typing responses, and thus would not be loading the server
simultaneously.

April 2012 Page 13 of 2

4.2.2 Real-time versus Virtual User Mapping

It is important to map simulated virtual users to the equivalent real-time users to provide
realistic load levels. For applications that have real-time usage history (for example, if a
version of the application is already in production), the server load (requests handled per
second) during the peak traffic hour needs to be compared with the server load created on
the server during the performance test. This helps to confirm that the load simulated during
the performance test is representative of the real-world load. Adjust the think times in the
test scripts to create the appropriate load on the server. For more information, see Think
Time and Delay Time. The two things to consider when you analyze server load are
requests per second and number of active users.

Depending on how the server and application handle resources related to connections,
keep-alive settings, and other workload criteria, generating the same rate of requests with
n users rather than 2n users might result in a significantly different performance load on the
server, affecting total server capacity and client response times. You can account for this
by monitoring the number of open connections, and perhaps other related application
resources like number of sessions, in the real world and comparing those with the server
load simulated during the performance test. You can perform experimental runs to see if
the server and the application are sensitive to the number of users for a given request rate,
and if not, it can be ignored.

Requests per second is a more granular and appropriate unit to measure the load that is
handled by the server. The number of users that is handled by the server is a metric to be
reported to the business stakeholders. Performance testers should focus on the number of
requests handled by the server.

4.2.3 Think Time and Delay Time

“Think time” is the time that users take to think or to navigate to different pages in an
application. Consider think time when you are deciding on a test strategy.

Users have different think times depending on the part of an application that they are
using. When you run a load test, apply a randomization factor on the configured think time.
Performance test tools provide a mechanism for randomizing think times during a run.
Tools use terms such as “think time,” “delay time,” and so on, to account for this pause
between interactions.

Rational Performance Tester has concepts of both “think time” and “delay time.” Both are
added to the tests when they are recorded. Delay time is a fixed amount of time between
various page elements. Think time is the user pause between actions. The IBM Tivoli
Performance and Scalability teams manipulate both of these variables.

Another way to introduce randomization is to randomize each iteration of the test by setting
loop control features. The IBM Tivoli Performance and Scalability teams use this so that
the transactions per second per user can be controlled to provide the projected transaction
rates over the test time. When you use the loop control features, you might want to set the
schedule to use the recorded think time, because the loop control is providing the
randomization. However, it is typically better to use both to better model real users.

Think time affects the server load. Decreasing think time increases the server load.
Increasing think time reduces server load. To calculate the appropriate think times, you
must understand the desired transactions per second per user.

April 2012 Page 14 of 2

Ensure that think times are placed in the script outside of the start and end of the
transactions that are being measured. If they are not, the think times are included in the
transaction-response-time results. Rational Performance Tester has two metrics for
measuring the time that is associated with a transaction: elapsed time (wall clock time) and
net server time. You can think of net server time as the sum of all the page response times,
excluding think times and other processing time such as custom code execution time and
reference harvesting that is not associated with normal client-server response time.

4.3 Test Scenarios

Design your test scenarios to start by using relatively few system resources, then steadily
increasing resource use to reach a stable peak level, then decreasing resource use. During
the stable period, the target user load needs to perform various operations on the system
with realistic think times. Metrics should be taken during the stable peak period, not during
the ramp-up and ramp-down periods. Ensure that enough data samples have been
gathered before you make conclusions about the response time metrics; there might be
extraneous reasons for faster or slower response times at any single point in time. Using
the 90th percentile response time to report the response-time metrics is another guideline
to follow to eliminate response-time spikes.

April 2012 Page 15 of 2

5 Benchmark Test Environment
Considerations
Many components make up the performance test environment. Consider each component
during the planning phase of the project. A mirror image of the production system is ideal,
but is often not possible. Therefore, pay special attention to each component to ensure that
extrapolations from test environments can be applied to production environments. A
comprehensive understanding of the intended production environment is a prerequisite to
planning the test environment.

At a minimum, the test environment should have the following features:

 The same overall architecture as the production environment:

o The same operating system and middleware platforms. For example, if the
production system uses VMs, AIX, DB2, and so on, the test configuration
should use those as well.

o Similar tiers, hardware proportions, and topology. For example, use the
same number of JVMs on the application server, the same distributed
database and application servers, and so on.

o The same configuration for the integration framework and cron settings:.
For example, using a dedicated server as opposed to dedicated JVMs on
the same physical server as the JVMs that are being used for the user
interface.

 Matching software stack versions; the same versions of the operating system, the
middleware, and IBM Tivoli service management products.

 Comparable data volumes and distributions in the database.

 Identical server configurations. For example, both environments use SSL, both
have the same maximo.properties file, and both have the same security layers (for
example, policies, firewall rules, and so on).

If you do not closely match the characteristics of the production environment, you cannot
accurately correlate results from the test environment to the production environment, and
CPU and memory consumption might be different between the two environments.

Always identify the system configuration details of the server machines in the production
and test environments. Identify the number of CPUs, CPU capacity (clock speed), RAM
capacity, disk capacity, free space available on the disk, NIC card capacity, and network
bandwidth. Identify these details before you schedule the performance test, and document
them in the test plan document.

Successful performance testing requires a dedicated testing environment. Random
application traffic or rogue processes can skew performance results and create confusion
and variances in the tests. Both the server and the network components should be among
the dedicated resources. Network isolation is critical when the primary focus of the test
includes bandwidth testing, because general traffic on the LAN (traffic that is not caused by
the testing) can affect the test results.

April 2012 Page 16 of 2

When you configure the test environment for the first time, apply the best practices for
system performance guidelines to the hardware and software. Document any modifications
that you make during the testing process.

5.1 Application Servers

Unless you focus the testing on tuning or debugging a specific application, the standard
load tests that you perform should include all of the applications and processes that will be
used on the production system. A comprehensive test is the only way to validate the
overall performance expectations.

For the latest tuning information for IBM Tivoli service management products, see the Best
Practices for System Performance 7x white paper.

5.2 Database Servers

When you prepare for a performance test, you must have sufficient data in the test
database. The execution time of a SQL query might be significantly less when a database
contains 1000 records rather than 100,000 records. Database performance in the
production environment might be significantly worse than in the test environment if the
production database has a higher volume of data than what is tested.

Ensure that a representative amount of data exists in the test database to allow for data
usage during the tests. How table records are arranged and indexed affects performance.
Run database maintenance utilities before you create a database backup. Use the backup
to restore to the same state before each test run to allow test repeatability.

For the latest tuning information for IBM Tivoli service management products, see the Best
Practices for System Performance 7x white paper.

5.3 IBM Tivoli Service Management Products Build
Administration Servers

During performance testing, you might want to adjust values in the properties files and
build multiple EAR files to deploy for testing. Keep copies of any files that you might
change in case you need to fall back to an earlier configuration. Document the changes
that you make.

5.4 Monitoring Considerations

Some monitoring tools can affect system performance. Be selective about what you
monitor to minimize the effects of the monitoring tool on performance. If you set the
sampling interval too small, that too can negatively affect performance; however, setting
the interval too high misses potential bottleneck situations. It is a good practice to compare
results with monitoring on and with monitoring off to gauge the impact of monitoring. It
might be necessary to increase the level of monitoring when you are searching for
performance bottlenecks. But for official results, it is a good idea to reduce monitoring
levels to only what is needed to ensure that the results are valid.

April 2012 Page 17 of 2

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=8a16c9a5-a6c7-4b5e-aa44-e270fa0117cb

6 Test Development Essentials for Rational
Performance Tester

6.1 Load Simulation

Load testing tools such as Rational Performance Tester are typically thought of as having
two parts:

 The load test controller, which you use to create and drive the required load.

 The load test generators, which send the actual load to the server.

Depending on the number of virtual users that you plan to simulate, the load test controller
and the load test generator might be able to reside on the same hardware. The Rational
Performance Tester documentation might provide guidance about when hardware should
be dedicated and when it can be shared.

6.1.1 Load Test Controller

The load test controller can be referred to as the workbench or workspace. Rational
Performance Tester refers to the computer that is running the load as the workbench, and
the container for the tests and schedules as the workspace.

6.1.2 Load Test Generators

A load test generator, typically called an agent or driver, can be installed on several
systems to spread the load. To perform a 1000-user test, you can install agents on multiple
computers. Each agent might be configured to create a percentage of the virtual users.
Keep the resource utilization of each agent computer under 70%. Keep the throughput of
the agent computer reasonably below the capacity of the network interface. If either of
these guidelines is exceeded, results might be affected. The user load, created on each
different IP address is then sent to the server under test. From the load test controller, the
load generated by each load test generator is aggregated when you view it. By default the
individual results collected by each generator are discarded after aggregation for efficiency.
To see individual results, clear the Only Collect All Hosts Data statistics flag for the
schedule. Individual results are then retained and you can view them.

6.1.3 Load Test Data

Depending on the complexity of the test data, either the performance test engineer or a
database administrator can populate the data. When possible, use a database dump from
a production system to populate the test database. It might be necessary to write queries
to generate data to create your Rational Performance Tester datapools, which contain the
data used by the virtual users that execute the Rational Performance Tester tests.

April 2012 Page 18 of 2

6.2 Recording a Test

6.2.1 Before Recording

Before you record a test, document the steps to take. For example, after you enter text into
a filter, do you tab to the next field, press the Return key, or click the binoculars icon?
Define the names of your transactions so that when you execute a schedule containing
multiple tests, the page/transaction names are displayed in the correct order. A useful
format is <ScriptName>_<StepNumber>_<StepDescription>. For example,
AM01_01_Login, or AM01_05_EnterStatusWAPPR.

6.2.2 Workspace Settings

To reduce unnecessary automatic data correlation, modify the workspace preferences.
After you open Rational Performance Tester, select Windows > Preferences. From the left
pane, expand Test, then Test Generation and HTTP Test Generation. In the right pane,
select the Data Correlation tab. Set Optimize automatic data correlation for execution to
Efficiency.

Also set the preference to display heap information on the status line by selecting Windows
> Preferences > General and selecting Show heap status.

6.2.3 Recording

6.2.3.1 Caching

Rational Performance Tester Release 8.2.1 has introduced a new feature of page cache
emulation. All static content that the server transfers to cache (last-Modified or Age) is
handled by the emulation. The feature that emulates page caching considers only the
caching within a test. Once the user exits the test and re-executes it, the cache is re-
loaded. Note that in previous performance test papers, IBM Tivoli service management
products recommended disabling the MaxAge filter for performance testing; however,
leaving it enabled lends itself well to the caching now available in Rational Performance
Tester, so the recommendation is now to leave the MaxAge filter enabled, which is the
default setting when installing IBM Tivoli service management products.

When you are ready to begin recording, click on the recording icon and select HTTP test.
Clear the browser cache before the recording. If you have a need to re-record the test,
clear the cache before the next recording also.

Note down the number of pages recorded and compare that with the expected number.
Some actions record into multiple pages. If necessary, re-record the script, overwriting the
previous recording and place a comment in the recording where you would expect multiple
pages.

6.2.3.2 Transaction names

Name some pages while recording. The name applies to the page just recorded. Do not
name any pages that recorded into multiple pages at this time. It might cause confusion
when you clean up the test. You can name the remaining pages in the editor after
recording is complete.

April 2012 Page 19 of 2

6.2.3.3 Comments

Enter comments while recording. The comment precedes the next action that is recorded.
Because some steps record into multiple pages, comments are essential to understanding
the recorded test. Another way to annotate the test and improve its understandability is to
use the Rational Performance Tester screen shot feature. A picture can be the best way to
convey the state of the application at the time operations are performed.

6.2.3.4 Entering search values

If you record a search with a specific value, such as an item number or an asset number,
precede the value with an equals sign (=) in the filter. If you do a wildcard search, append
or precede the string with a percent sign (%).

6.2.3.5 Saving two versions of the recording

After all the steps have been recorded, close the browser to terminate the recording. Use
Save As to save the script with another name and make all modifications on the copy. It
might be necessary to return to the original unmodified script to view the test as recorded.

6.3 Editing Your New Recording

6.3.1 Test Flow

If there is a step that recorded into multiple pages and there is no obvious way to
distinguish the actions, you can merge the pages together. Highlight the pages, then right-
click and select Merge Pages. Select the first of the pages as the destination. If you have
already named the first page, you might have to do so again.

It might also be necessary to split recorded pages into multiple pages.

To name any pages that were not named while recording, position the cursor on the page
and edit the Page Title field in the Test Element Details section.

Add additional comments as needed so that anyone else viewing the script knows what
actions were taken. Click Add then select Comment to add the comment after the last page
element on a highlighted page. Click Insert then select Comment to insert the comment
above the highlighted page.

Because a typical user does not log in and log out between each major action performed,
put a loop surrounding the go_to_application through to the return_to_start_center. You
might also want to put a loop around other repeated actions, such as any next page/screen
pages.

6.3.2 Parameters

Rational Performance Tester takes the host and port numbers from the URLs and has
most of them parameterized to the test variables HOST and PORT. If no port number was
specified during recording, the default port number 80 is used. If you have multiple tests in
your schedule and plan to run the test against a different host than you recorded against,
create a datapool file with two columns, one for each value. The port column in the
datapool cannot be empty.

April 2012 Page 20 of 2

If your script performs an action against a specific item that was not the result of a search,
that item number should be parameterized in either a test variable or a datapool. If multiple
users will run the script, create a datapool for the user ID and password.

When you add the datapools to the test, consider how they will be used when you set their
properties. Search the online help for datapool options.

After you add the datapools to the test, modify the test variables to point to the datapool
fields.

6.3.3 Correlating Values

To make Rational Performance Tester scripting of IBM Tivoli service management
products successful, it is important to correlate the uisessionids and to correlate the
dynamic UI values (the MXid values).

Although Rational Performance Tester does a good job of correlating many values, there
are usually many other values to correlate.

Setting the recording preference to Efficiency instead of Accuracy is very important for IBM
Tivoli service management products sessions-ids. If the preference is set to Accuracy and
for any reason a page fails, the next session-id correlation usually fails, causing the
remaining pages to fail, as one failure leads to another. If the preference is set to
Efficiency, it will use the initial session-id found in the login.

Depending on the version of IBM Tivoli service management products that you are running,
you might not need to do the correlations on all MXid values. If you are running IBM Tivoli
service management products version 7.5 or later, and are using static MXids (update
maxpropvalue set propvalue='true' where propname='mxe.webclient.staticid'),
you do not need to correlate most MXids.

In recent versions of both Rational Performance Tester and IBM Tivoli service
management products, some of the MXid values are automatically correlated.

Click on the top of the test, and then click on the view button to Display Data Correlations.
Review each item that is labeled Datapool Candidate (the font color is green by default).
Examine the names and values to determine which ones might need correlating. Most
values named targetid and value need to be correlated if they are in the format mx####.
When using static MXids, the format of the values to correlate is longer, and contains both
alpha and numeric values after the initial mx. Values that are names of menus should be
correlated if all users do not have identical access permissions and application
permissions. Although currentfocus candidates do not need to be correlated, those values
are often used later as targetids and will need to be correlated.

Values in the format mx###[R:#] are selections in an array. If you always plan to use the
same element, this can be correlated like any other value. Otherwise, correlate the base
portion mx#### and create custom code to select a random value.

Give the newly created reference a meaningful name. After creating the reference, find any
other consumers of that value, and substitute them with the newly referenced item.

6.3.4 Modifying Regular Expressions

After all necessary correlations have been made, switch the view back to Display all test
Contents. Click on the top of the test then right-click on Display References.

April 2012 Page 21 of 2

Review the counts in the Occurrence column. It might be necessary to edit the regular
expression that was created so that it is more stringent. Click the Properties button to
modify the regular expression. If necessary, add more text to the regular expression and
click Verify. If verification passes, Rational Performance Tester was able to locate the
string. It is not necessary to update the Specific occurrence number because Rational
Performance Tester does that. There are times when you cannot make the occurrence
count 1. Make a serious effort to get the number down to a single digit when uniqueness
cannot be achieved.

Following are some hints for making unique results from the regular expressions:

Append to regular expression after (.*?)"
 [^>]*?title="<Matching_Text>"
 [^>]*?accesskey='<Matching_Text>'

Preface the regular expression with:
 input
 table
 <Matching_Text>[^<]*?
 <Matching_Text>.*

If the IBM Tivoli service management products build/release level has changed since the
test was created, it is possible that the test no longer executes correctly. It might not be
necessary to re-record the test. You probably need to modify the regular expressions for
your correlated MXid values. The expressions might need to be either more stringent or
less stringent.

Due to a defect in Rational Performance Tester, there might be occasions when Rational
Performance Tester creates a regular expression that uses the host name. If the test will
potentially be executed against a different host, modify each of these regular experssions.
Go to the top of the test, right-click, and select Display references. Look at the Regular
expression column. If any expressions contain the host name, modify them. Depending on
the current regular expression, one of the following expressions might be an appropriate
substitution:

http.{0,1}://.*?(/[^?]*)/
 http.{0,1}://.*?(/.*?)'

http.{0,1}://.*?(/.*?)"
http.{0,1}://.*?(/.*?)\]

6.3.5 Data Correlation References in Conditional Code

If there is a loop in the code that is executed conditionally, ensure that correlations that
occur after that loop are not correlated to pages within the loop. Correlate to a page that is
always executed.

6.3.6 Removing Unused References

Data correlation causes slight overhead in executing a test. If there are many correlations
that are not used, you might want to remove them. From the Display References window,
review the counts in the Occurrence column. If the occurrence count is blank, the
corresponding reference is not used and it can be removed. Select the reference and click
the Disable icon.

April 2012 Page 22 of 2

6.3.7 Text Checks

To help ensure that Rational Performance Tester scripting is successful, include content
verification points. Without verification points, you can get a false sense of confidence that
your tests are executing correctly.

Create a content verification point for each page. Select a page element that has a
Response 200 – OK message. Click Response 200 – OK. Click the Add button and select
Content Verification Point. A page might contain more than one page element with a
Response 200 – OK message. Select the most appropriate one. Use the Response
Content or Browser tabs under Protocol data to help decide which response to use. Look in
the content window on the right and search for some text that might be unique to that page.
Ensure that the pull-down selection for the conditions that pass or fail the verification point
is set correctly.

6.3.8 Think Time and Delay Time

Remove all think time that was recorded in the scripts on each page. Add realistic think
time (five or ten seconds) prior to each action during which a user would normally read the
screen or enter text on the screen.

In addition to the think time that Rational Performance Tester applies just prior to executing
the requests associated with each page, you might want to adjust the playback speed of
the client (browser) delays within the page. From the root of the test, click on the HTTP
Options tab in the Test Element section. Adjust the playback speed. The slider adjusts the
speed at which the HTTP requests are sent to reflect slower or faster client (browser)
processing. Move the slider all the way to the left for no delay. This scale is applied to all
requests in the test.

6.3.9 Secondary Images

Rational Performance Tester Release 8.2.1 includes a page cache emulation feature. If
using an earlier version, depending on the expected amount of caching on your working
environment, you might consider disabling the loading of images. From the root of the test,
click on the HTTP Options tab of the Test Element section. Click Modify next to Secondary
request behavior, and then check Images. Click Disable. You do not need to use this
method when using a current version of Rational Performance Tester.

6.3.10 Custom Code

Custom code can be used for many different purposes. Some of the common uses include
printing out a value, picking a random element, checking the value of a variable, and
exiting a loop.

You do not need to be a Java™ programmer to create custom code. You just need an
understanding of basic programming and a few examples to start with. Position the cursor
on the page that you want the code inserted before. Click Insert and select Custom Code.
Give the code a meaningful name in the Class name field. It is a good practice to put all
your custom code in its own package, separate from the test package that Rational
Performance Tester uses. When you click Generate code, Rational Performance Tester
creates a skeleton for you.

The following code is an example to print out a passed value.

package mypkg;

April 2012 Page 23 of 2

import com.ibm.rational.test.lt.kernel.services.ITestExecutionServices;

/**
 * @author unknown
 */

public class PrintValue implements

 com.ibm.rational.test.lt.kernel.custom.ICustomCode2 {

/**
 * Instances of this will be created using the no-arg constructor.
 */

public PrintValue() {

}

/**
 * For javadoc of ICustomCode2 and ITestExecutionServices interfaces, select
'Help Contents' in the
 * Help menu and select 'Extending Rational Performance Tester
functionality' -> 'Extending test execution with custom code'
 */

public String exec(ITestExecutionServices tes, String[] args) {
 return null;
}

}

The ITestLogManager interface logs messages and verification points to the TestLog
(execution history) from actions in custom code. Use the following import line in your
custom code:

import com.ibm.rational.test.lt.kernel.services.ITestLogManager;

Add the following lines between public String exec(ITestExecutionServices tes,
String[] args) { and return null;

 ITestLogManager tlm = tes.getTestLogManager();
 String ValueToPrint = args[0];
 tlm.reportMessage("Passed Value: "+ ValueToPrint);

You now have custom code that can print out a value that is passed to it.

For more information, search Rational Performance Tester documentation for Extending
test execution with custom code.

6.3.11 Creating References

If you have custom code in your test, you might need to create a reference to an item to
pass to the custom code.

Select the page element that has the response that contains the value that you want to
capture. Go to the server response (Response 200 – OK) of that page. Enter CTRL+Left
Click to display the server response in the content window. In the content window, right-
click, select Find, then In Content (CTRL+F often does not work in a content window).
Search in the content pane on the right for the text that you want. After you find the value,
highlight the text, right-click, and select Create reference.

April 2012 Page 24 of 2

Sometimes it might be necessary to pass the entire response content to custom code. To
create that reference, position the cursor in the content window and right-click, and select
Create Field Reference.

6.3.12 Handling Maximo Page Sequence Numbers

Tivoli Process Automation Engine Release 7.5.0.1 can send multiple requests
asynchronously. In order to ensure that all the requests are received, two sequence
numbers have been added to the server requests on every maximo.jsp: pageseqnumber
and xhrseqnum. These sequence numbers are specific to a user and tracked by session
number. When looping within a test, you must manipulate these sequence numbers. Each
new page must increment pageseqnum and reset xhrseqnum. Every request within a
page must increment xhrseqnum.

Data correlation rules are created to handle some of the details. Create a rule that
searches the html headers to see if pageseqnum is present. If found, create a test variable
and create a substitution from the pageseqnum header value to the variable. A similar rule
should be created for xhrseqnum.

To be able to update the variables from the user data area, the variables must be defined
to span across the life of the virtual user. Each time the script is invoked, the variables
must also be initialized to 0 (zero).

You can manipulate the variables with custom code. One routine should increment
pageseqnum and reset xhrseqnum. The other should increment xhrseqnum. Prior to each
maximo.jsp, one of the two custom code modules must be inserted.

The following snippet of the custom code handles pageseqnum:

public String exec(ITestExecutionServices tes, String[] args) {
 ITestLogManager tlm = tes.getTestLogManager();
 IDataArea userDataArea = tes.findDataArea(IDataArea.VIRTUALUSER);
// Get the variables value field.
 String pageseqnum = userDataArea.get("pageseqnum").toString();
// tlm.reportMessage("pageseqnum " +pageseqnum);
 int PageSeqNum ;
 int NewPageSeqNum ;
 PageSeqNum = Integer.parseInt(pageseqnum);
// tlm.reportMessage("pageseqnum " +PageSeqNum);
 NewPageSeqNum = PageSeqNum + 1;
 tlm.reportMessage("New pageseqnum: "+ NewPageSeqNum);
 userDataArea.put("pageseqnum", Integer.toString(NewPageSeqNum));
 userDataArea.put("xhrseqnum", "1");
 return null;
}

The following snippet of custom code handles xhrseqnum:

public String exec(ITestExecutionServices tes, String[] args) {
 ITestLogManager tlm = tes.getTestLogManager();
 IDataArea userDataArea = tes.findDataArea(IDataArea.VIRTUALUSER);
// Get the variables value field.
 String xhrseqnum = userDataArea.get("xhrseqnum").toString();
// tlm.reportMessage("xhrseqnum " +xhrseqnum);
 int XhrSeqNum ;
 int NewXhrSeqNum ;
 XhrSeqNum = Integer.parseInt(xhrseqnum);
// tlm.reportMessage("xhrseqnum " +XhrSeqNum);
 NewXhrSeqNum = XhrSeqNum + 1;
 tlm.reportMessage("New xhrseqnum: "+ NewXhrSeqNum);

April 2012 Page 25 of 2

 userDataArea.put("xhrseqnum", Integer.toString(NewXhrSeqNum));
 return null;
}

6.3.13 Special Situations

A known problem with automated testing is that IBM Tivoli service management products
can display an unexpected pop-up window. There are specific conditions to consider:

 When the pop-up always occurs and is in the recorded test.

 When the pop-up occurs while waiting for an event.

 When an error message box appears.

6.3.13.1 When the pop-up window is recorded

One case of a pop-up window being recorded is when a Please Wait window appears on
the screen when the status of a work order, purchase requisition, or purchase order is
changed. In the IBM Tivoli service management products code, there is a loop with a three-
second sleep timer, then a check for the expected response.

In the change-status case, the test records the Please Wait pop-up window. There should
be a single page element with a Response 200 status. The Test Data field should show an
event of longopcheck with a targetid of longopwait. Before the first page element, specify
a delay of three seconds. Create a reference to the entire response from the page
element. After the page element, insert custom code that checks for text in the response
that would indicate a failure. If any of that text is found, insert code to break out of a loop,

tes.getLoopControl().breakLoop();.

Set the return status so that you know that a problem occurred. Insert additional custom
code that checks the response for any text that would indicate that the request was
successful. If such text is found, insert code to break out of a loop. Within the page, create
a loop to include the delay time, the page element, and both pieces of custom code.
Determine the maximum amount of time that you think it could possibly take for the
expected response to be returned under load. Set the loop iteration count to one third of
that time. Remember that the loop takes a minimum of three seconds to complete.

The response time for the page will not be correct. The initial three-second delay is
excluded. Rational Performance Tester starts the timing of a page from the send of the first
page element to the end of the response from the last page element (with adjustments to
account for overhead, such as regular expression-processing time to extract references
from responses, or the execution time of any embedded custom code within the page).
You need to manually adjust your results to include an additional three seconds.

6.3.13.2 When the occurrence of a pop-up is inconsistent

One case of inconsistent occurrence of a pop-up window is when a Please Wait window
appears following a filtered search. A Please Wait pop-up window does not appear on all
searches.

Depending on the version of IBM Tivoli service management products that you are running,
this problem can be avoided by setting one or more of the following properties:

April 2012 Page 26 of 2

 webclient.disablelongopquery=true

 webclient.longopquerydialogwaitetime=300000 (was 3000)

If these properties are not available in the version of IBM Tivoli service management
products that you are running, coding for this situation is more difficult. You must force a
situation in which you can record the steps and always have the pop-up occur. You need to
code the Please Wait page as described, but also put a single iteration loop around the
search and the Please Wait code. After your search, you can check the response to see if
you have your list of items. If so, break out of the loop; otherwise, continue and execute the
Please Wait loop.

Early versions of IBM Tivoli service management products 7.x required a fix from
development for a databean.class file that had the same effect as the specified properties
statements.

6.3.13.3 When an error message box appears

This case is the most challenging. If you can anticipate when the server might possibly
return an error, you can create a reference to the entire response field and pass it off to
custom code that takes the appropriate action. If the error cannot be anticipated, you need
to have enough logging enabled to debug the situation and handle it appropriately.

6.4 Executing a Schedule

6.4.1 System Clocks

Synchronize the system time of all computers in the system that is under test so that
resource monitoring uses the correct timestamps. Rational Performance Tester can handle
small differences in system clocks.

6.4.2 Eclipse Settings

A staged schedule, by default, terminates at the end of a stage if the expected number of
users in the stage is not active at the end of the stage. You can set a tolerance value to
allow the schedule to continue. The value is a percentage of users that are allowed to have
not completed, and the default is 0. Increasing this value allows you to debug the test if
there are errors.
-DrptStopTolerance=10

The Full Eclipse .ini file can be found at <Install_Directory>\SDP\eclipse.ini. The
Streamlined Eclipse version can be found at <Install_Directory>\SDP\rptse\eclipse.ini.
Make the specified changes to both of the Rational Performance Tester eclipse.ini files.

6.4.3 Agent Settings

6.4.3.1 Multiple Agents on the Same Computer

Because the volume of users that an agent can handle is limited by the heap size, it might
be necessary to put multiple agents on a single computer and differentiate between the
agents by an entry in the host file of the workbench computer. Be sure not to put more
agents on the computer than the CPU and memory resources allow.

April 2012 Page 27 of 2

6.4.3.2 Settings Within the Workspace

After creating an agent location in your workspace, modify the properties of the agent to
include the following line:

RPT_DEFAULT_MEMORY_SIZE = 1500

For a Linux™ agent, you can use the value 3000.

In general, set RPT_VMARGS = -DKEEP_ALIVE_ACROSS_TEST=TRUE when looping over tests
in the schedule so that Rational Performance Tester attempts to reuse connections across
loop iteration boundaries, that is, test boundaries. (By default Rational Performance Tester
closes connections at the end of the test.) This behavior means that fewer connections are
created, which can be significantly less work for both the agent and the system under test.
However, if your test represents a browser session (which closes its connections upon
exit), then the Rational Performance Tester default behavior is correct and you should not
override it with this setting.

If the virtual user does not reuse the connection within the keep-alive timeout, the server
might close it and then the virtual user has to create a new connection.

If the virtual user exceeds the server keep-alive reuse limit, the server closes the
connection and the virtual user must create a new connection.

With at least one IBM Tivoli service management products customer, fewer resources were
used creating new connections for each iteration. The RPT_VMARGS = value was
substituted with -DKEEP_ALIVE_ACROSS_LOOPS_WITHIN_TEST=FALSE (the default). The
situation was not investigated further, but perhaps the time cycle of the loop and the
particular server keep-alive settings combined to create a situation in which virtual users
were continually trying to reuse connections that were always closed by the server.

6.4.3.3 Settings on a Windows Agent Computer

Ensure that any Windows® agent computers have sufficient TCP/IP ports. Set the following
values in the system registry:

TcpTimedWaitDelay dword:0000001e (30)
StrictTimeWaitSeqCheck dword:00000001 (1)
MaxFreeTcbs dword:00011940 (72000)
MaxHashTableSize dword:0000ffff (65535)
TcpWindowSize dword:0000ffff (65535)
EnableDynamicBacklog dword:00000001 (1)
MinimumDynamicBacklog dword:00000032 (20)
MaximumDynamicBacklog dword:000003eb (1000)
DynamicBacklogGrowthDelta dword:0000000a (10)
Interfaces\TcpAckFrequency dword:00000001 (1)

For Windows XP and Windows Server 2003, set:

MaxUserPort dword:0000ffff (65535)

These settings can be found in
HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/Tcpip/Parameters

For Windows 7, Windows Server 2008, and Windows Vista, the default dynamic port range
has changed. The new default start port is 49152 and the default end port is 65535. There

April 2012 Page 28 of 2

are 16,384 ports available by default, rather than 5,000. To view the dynamic port range,
start the Command Prompt window and use the netsh command:

netsh int ipv4 show dynamicport tcp

The following command changes the dynamic port range for the maximum number of ports
allowed:

netsh int ipv4 set dynamicport tcp start=1025 num=64510

The minimum start port is 1025 and the maximum end port cannot exceed 65535.

6.4.3.4 Settings on a Linux or AIX Agent Computer

For Linux or UNIX® or AIX® agents, modify ulimit -n 30000 or unlimited to change the per-
process file limit from the default of 1024.

Linux

Edit /etc/sysctl.conf with the following parameters and save the file. Run the following
command:

sysctl –p

net.ipv4.ip_local_port_range 2048 65000
net.core.rmem_default 262144
net.core.wmem_default 262144
net.core.wmem_max 33554432
net.core.rmem_max 33554432
net.core.netdev_max_backlog 5000
net.ipv4.tcp_no_metrics_save 1
net.ipv4.tcp_rmem 4096 16777216 33554432
net.ipv4.tcp_wmem 4096 16777216 33554432
net.core.optmem_max 40960

AIX

Execute the following commands with the values below.

no –p –o <parameter> = <value>
chdev -l sys0 -a maxuproc=<value>

sb_max clean_partial_conns 1
tcp_timewait 30
tcp_finwait2 60
tcp_keepidle 600
tcp_keepinit 40
tcp_nodelayack 1
tcp_keepintvl 10
tcp_ephemeral_low 1024
tcp_sendspace 4096000
tcp_recvspace 4096000
rfc1323 1
Maxuproc 8192

April 2012 Page 29 of 2

6.4.3.5 Agent Selection

When you select the location on which to execute a schedule group, consider both load
balance and how your datapools are configured: shared, private, or segmented.

6.4.4 Resource Monitoring

With Rational Performance Tester, you can collect Windows PerfMon data, Unix/Linux/AIX
rstatd data, DB2 data, Apache Tomcat data, JVM data, WebSphere® PMI data ,as well as
any other performance metrics that are available from Tivoli Monitoring, if installed.

By default, the rstat daemon is not configured to start automatically on most systems. To
configure this, perform the following steps as the root user:

 Edit /etc/inetd.conf and uncomment or add an entry for rstatd; for example,rstatd
sunrpc_udp udp wait root /usr/sbin/rpc.rstatd rstatd 100001 1-3 2

 Edit /etc/services and uncomment or add an entry for rstatd; for example, rstatd
100001/udp 3

 Refresh services: refresh -s inetd

 Start rstatd: /usr/sbin/rpc.rstatd

When you create your resource monitors, put the various types of monitors on their own
location asset. Multiple PMI ports cannot be placed in the same location; each must be in
its own location.

When you select metrics to collect, do not collect more data than you plan to analyze, and
do not collect data too frequently.

6.4.5 Test Log

Collecting too much data can negatively affect performance, but collecting insufficient data
can make debugging virtually impossible. In a production environment or with a large
number of users, limit logging. Always set What to Log to Show errors and failures and set
Also show warnings to All.

When debugging tests, set the log level for all areas to All, and monitor a significant
number or percentage of users. These settings show all page responses, even for pages
that did not fail.

After the tests have been debugged, set the log level for And also show all other types to
Primary Test Actions. Decrease the percentage of monitored users to a relatively small
number. With these settings, you can see the details for the page that failed for the subset
of users that are logged.

6.4.6 Statistics and Resource Monitoring Interval

The sampling interval on the schedule Statistics tab sets the sampling interval for reports.
Increase the statistics sample interval to 30 or 60 seconds for long-running tests. Rational
Performance Tester might prompt you to increase that interval when invoking an extremely
long test. The suggested time in that prompt should be the minimum time that you specify.
However, if you think that you need a shorter sample interval than is suggested and you

April 2012 Page 30 of 2

think that you have sufficient CPU and memory resources available in the workbench, you
can try a shorter interval. Observe the workbench performance to see if it is acceptable.

The polling interval for resource monitoring is set on the Options tab in the location
document for the monitor. For long runs, increase the Windows Performance Monitor and
UNIX rstatd monitor interval to at least 30 or 60 seconds. The default is five seconds. You
might want to set the polling interval to the same value as the statistics sampling interval.
Set the interval for WebSphere PMI to 300 or 600 seconds. Set the DB2 interval to 300 or
600 seconds. Increase other monitored values appropriately.

6.4.7 Performance Requirements

Each application that is tested should have a set of criteria that determines if the test
passes or fails. At a minimum, set values for response time, pass/fail percentage, and CPU
usage on both the application server and the database server. Many more elements can
be set as performance requirements. Information about whether or not the requirements
are met is available in the performance report results.

6.4.8 Run Configurations

The use of run configuration minimizes the possibility of result corruption when you move
results from the default location to a subfolder. A run configuration file allows you to name
the results to something more meaningful than the schedule name appended with the date
and time of the run.

From the Run menu, select Run Configuration. Click the left-most icon in the left pane:
New launch configuration. In the right pane, name the configuration. On the Schedule tab,
select the schedule to run. On the Test Log tab, clear the check box next to Use defaults.
Specify the test results name in the Name field. The date and time of the run is appended
to the name. Specify the location where you want the results to be placed. If you want a
new directory, create it before you create the run configuration. Click the Apply button. The
first time you use the run configuration, you need to click the Run button. After that, the
configuration name is available on a drop-down menu to the right of the run icon (a green
circle with an arrow inside it).

6.4.9 User Comments

After the schedule is invoked or is completed, there is a User Comments field in the
Performance Test Results window. Use the field to document the environment that the test
was executed in.This field is available to performance report results as of release 8.2.1 of
Rational Performance Tester.

6.5 Performance Results

Reports are displayed automatically during a run. Preference settings (Window >
Preferences > Test > Performance Test Reports) control whether you see the results for
the active time range or for the entire run.

When you close a report, it is not saved. Rational Performance Tester reports are like
stored queries. You can open a report (run a query) on a given result as many times as
you want and the result is not affected. If you modify the report (add a counter, add a filter,
and so on), you have effectively modified the query. The user is prompted to save or
discard those changes when the report is closed. To redisplay the report, in the Test
Navigator, expand the project until you locate the run. To display the default report, double-

April 2012 Page 31 of 2

click the results. To display another report, right-click the test results, click Display Report,
and then select the report to display.

6.5.1 Custom Reports

The default report is the HTTP Performance report, which contains 11 tabs. You might
want to create your own report. By default, the verification report and the percentile report
are separate reports. You might want to create new tabs in your report for that information.
You would need to modify the preferences to make your report the new default. From the
Windows menu, select Preferences > Performance Test Report > Default Report.

For more information on creating a custom report, see Customize, export, and compare
reports.

6.5.2 Analyzing Performance Test Results

While the test is executing, any errors that occur are displayed in the Execution Event
Console tab. If possible, review the errors as the test executes and terminate the test if a
significantly large percentage of errors are occurring. Once the test completes, you can
review the test log by right clicking on the performance results and selecting Display Test
Log.

Review the errors on the Overview tab and, if necessary, review the log details on the
Events tab.

If your load tests get connection errors after applying the TCP/IP tuning recommendations
for the agent computers, you might experiment with applying those settings on the
application server as well. In particular, the values that affect the number of available ports
(MaxUserPort and dymanicport settings in Windows or the tcp_ephemeral_low setting in
AIX or Linux), as well as the TCP time wait delay settings.

6.5.3 Comparison of All Time Ranges

When you run a schedule that contains stages, time ranges are automatically created for
each stage. You can display a report that compares these stages. You also can set
preferences to display the report automatically at the end of a staged run.

The Compare report compares the time ranges of each stage. The report provides a quick
side-by-side analysis of how the system under test performs under various user loads.
After the test is complete, right-click on the results file and select Compare All Time
Ranges. Depending on whether or not your preferences are set to display the active time
range or the default time range, this might take several minutes to complete. You can also
select specific time ranges to compare in the Performance Test Run window.

6.6 Other Workspace Issues

6.6.1 Project Cleanup

On occasion, when a project has been imported into an existing workspace, there might be
hundreds of entries displayed on the Problems tab.

Two steps might be needed to remedy the situation. In the Navigator window, expand the
tree until you see src / test. (To display the Navigator tab, click Windows > Show view >

April 2012 Page 32 of 2

http://www.ibm.com/developerworks/rational/library/09/loadtestwebapps_part5/section4.html
http://www.ibm.com/developerworks/rational/library/09/loadtestwebapps_part5/section4.html

Navigator.) Remove all the items that end in java and that have names that match your test
and schedule names and contain a large numeric string in the name. Do not remove any
that have a name that matches custom code that might have been put in that class.

In the Test Navigator window, right-click on the project and select Properties. Click on Java
Build Path. Click on the Libraries tab. Highlight all entries except JRE System Library [jdk]
and any externally added libraries. (The entries to remove should have a red X next to
them, which indicates that they cannot be found.) Click Remove. From the Project menu,
select Clean. Click the radio button next to Clean projects selected below. Select the
project. Clear the check box next to Start a build immediately. Click Build only selected
projects.

April 2012 Page 33 of 2

7 Troubleshooting Performance Problems
Use the troubleshooting procedures in a development or test environment for performance
analysis and debugging. In general, you should not use the procedures in a production
environment. Use the procedures in a production environment only if you cannot isolate the
problem in a test environment.

7.1 Performance Problem Determination

If possible, do load testing during the implementation phase to expose performance
problems before you put IBM Tivoli service management products into production.

If you have the equipment to perform load testing, you can use load testing after IBM Tivoli
service management products are in production to determine if there is any performance
impact from patches or from data growth over time.

7.1.1 Problem Determination Techniques

Application Server

Review WebSphere logs for any errors. For load-balanced implementations, pay attention
to the distribution of users across the JVMs. Monitor the JVM memory utilization on the
application server by enabling verbose garbage collection.

WebSphere Application Server Logs

SystemOut.log and SystemErr.log—Any application errors, long-running SQL queries, and
so on, are in these logs.

Native_system_err.log—Verbose garbage collection information is in this log if verbosegc
is enabled.

http_plugin.log—Review this log for any load balancing issues in a clustered environment.

WebSphere Application Server Configuration

Ensure that the JVM heap size is set adequately and that heap exhaustion does not occur.

Ensure that thread pool sizes for the default and WebContainer thread pools are set to
appropriate levels.

Enable the Connection Pool Watchdog to monitor the database connection pool to ensure
that connection leaks are not occurring by setting
log4j.logger.maximo.dbconnection to INFO.

April 2012 Page 34 of 2

Web Server

Review Web server logs for errors. View the maximum connections and total connection
attempts to see if your Web server can use as much of the connection as it needs.
Compare these numbers to figures for memory and processor use to determine whether a
problem is caused by a connection, and not some other component.

On IBM HTTP Server, the relevant logs are access.log, admin_access.log,
admin_error.log, error.log, and http_plugin.log.

It might be necessary to raise the ThreadsPerChild setting in the httpd.conf file.

Database Server

Analyze the maxsession table and the number of database connections to verify session
activity is as expected.

Also monitor database server memory and instance memory. You can gather database
traces and snapshots to assist with database tuning issues. See DB2 Query Tuning and
Index Creation and Tuning and Indexing Oracle Databases for more information.

Network

You can monitor the bytes per second processed by the network interface to gain insight
into potential network overload.

If more detailed network information is required to understand bandwidth requirements,
you can use bandwidth-monitoring tools to analyze HTTP requests, the number of round
trips between tiers, and TCP/IP packet information.

CPU

Monitor the CPU to ensure that all processors are being utilized as expected and that
overall CPU utilization remains healthy.

Memory

Be careful about monitoring total memory usage. For IBM Tivoli service management
products, JVM heap size is the most important memory metric to monitor on application
servers.

7.1.2 Problem Determination Tools

You can use tools to help determine performance problems in IBM Tivoli service
management products.

IBM Tivoli Service Management Products Tools

IBM Tivoli service management products provide the following tools to help with problem
determination:

April 2012 Page 35 of 2

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=7de6f5ac-ae00-4620-b207-ca933b4f2939
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=7de6f5ac-ae00-4620-b207-ca933b4f2939
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=9e8a4bf2-cf8e-428b-8a5d-91caa82a426d

 DB2 Snapshot Format Tool—A Perl script that reads a DB2 snapshot file and
produces a semicolon-delimited text file. You can load this file into a spreadsheet
to help idenfity slow-performing SQL queries.

 Activity Dashboard (also called PerfMon)—For instructions on enabling and using
the activity dashboard, see Chapter 6 in DB2 Query Tuning and Index Creation.

 IBM Support Assistant Tool—Provides a workbench to help you with problem
determination.

Java Core, Heap Dump, and Garbage Collection Utilities

You can use the following tools to debug Java code:

 IBM Thread and Monitor Dump Analyzer for Java—Analyzes javacores and
diagnoses monitor locks and thread activities to identify the root cause of hangs,
deadlocks, and resource contention, or to monitor bottlenecks.

For information about collecting thread dump files for Websphere Application
Server, see To force a thread dump in Web module or application server stops
processing requests.

 HeapAnalyzer—Allows the finding of a possible Java heap leak area through its
heuristic search engine and analysis of the Java heap dump in Java applications.

For information on collecting heap dump files for Websphere Application Server,
see Generating heap dumps manually.

 IBM Pattern Modeling and Analysis Tool for Java Garbage Collector—Parses
verbose GC trace, analyzes Java heap usage, and recommends key
configurations based on pattern modeling of Java heap usage.

Remote Connection Utilities

 PuTTY—A Telnet and SSH client included in the PuTTY utilities that can be used
to connect to remote UNIX platforms that are secured with SSH.

 Remote Desktop Connection—Comes with Windows and allows remote
connection to other Windows systems.

File Transfer Utilities

 WinSCP—A free SFTP and FTP client for Windows that can be used for file
transfers to and from UNIX platforms.

 psftp—An SFTP client included in the PuTTY utilities that can be used for file
transfers to and from UNIX platforms that are secured with SSH.

Application Profiling Utilities

Use the following tools to profile and debug Java code:

 Performance Inspector—Contains suites of performance analysis tools that help
you understand the performance of applications and the resources they consume.

April 2012 Page 36 of 2

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=e5ef42c1-3a59-4d3a-bd24-5b576b33926b
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=7de6f5ac-ae00-4620-b207-ca933b4f2939
http://www.ibm.com/software/support/isa/
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/rtrb_appdies.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/rtrb_appdies.html
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=4544bafe-c7a2-455f-9d43-eb866ea60091
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/tprf_generatingheapdumps.html
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=22d56091-3a7b-4497-b36e-634b51838e11
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/
http://winscp.net/eng/index.php
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/
http://perfinsp.sourceforge.net/

 YourKit —A CPU and memory Java Profiler that supports J2EE/J2ME.

 Eclipse Memory Analyzer—Helps you find memory leaks and reduce memory
consumption.

 OProfile—A system-wide profiler for Linux systems that can profile any running
code with low overhead.

Other Utilities

 ActivePerl—Provides a Perl programming environment that can be useful for
writing scripts to help determine integration framework problems.

 Database SQL Query Tools—Each of the database platforms contain tools that
you can use to analyze SQL queries to help with long-running SQL statements.

7.2 Monitoring the System

Ongoing monitoring of your system can prevent performance issues from arising in the first
place. Have a monitoring strategy in place before you put IBM Tivoli service management
products into production.

Monitoring the Maximo Platform provides an overview of how you can use the Tivoli
monitoring portfolio to monitor your environment.

7.2.1 Monitoring Tools

You can also use the following tools to monitor your IBM Tivoli service management
products.

Application Monitoring Tools

 Tivoli Monitoring Agent for Maximo—An optional feature pack that can be
downloaded to use the capabilities of IBM Tivoli Monitoring. The feature pack
includes Tivoli Monitoring software that you can use to monitor server memory
statistics, cron tasks, user connections, database connections, installed products
and licenses, and other system information.

For more information about using IBM Tivoli Monitoring with IBM Tivoli service
management products, see the IBM Maximo Monitoring Jam presentation.

 IBM Tivoli Composite Application Manager (ITCAM)—Can be used to monitor
applications at a deeper level for potential issues. For more information about
using the ITCAM family with IBM Tivoli service management products, see System
Performance Monitoring and Diagnosis using ITCAM Products.

Middleware Monitoring Tools

Use the following monitoring tools to monitor the middleware components that are
associated with IBM Tivoli service management products:

April 2012 Page 37 of 2

http://www.yourkit.com/
http://www.eclipse.org/mat/
http://oprofile.sourceforge.net/about/
http://www.activestate.com/activeperl/
https://www.ibm.com/developerworks/wikis/display/maximo/Monitoring+the+Maximo+Platform
http://www.ibm.com/support/docview.wss?rs=3214&context=SSLKT6&q1=itm&uid=swg24025477&loc=en_US&cs=utf-8&lang=en
https://www.ibm.com/developerworks/wikis/display/maximo/Monitoring+and+improving+performance+of+your+Maximo+environment
http://www.ibm.com/software/tivoli/products/composite-application-mgrproductline/
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=23b39fa5-1d51-4c6d-8c29-152f03e3f9cb
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=a9ba1efe-b731-4317-9724-a181d6155e3a#fullpageWidgetId=W5f281fe58c09_49c7_9fa4_e094f86b7e98&file=23b39fa5-1d51-4c6d-8c29-152f03e3f9cb

 Tivoli Performance Viewer—Enables monitoring of the overall health of IBM
WebSphere Application Server from within the administrative console.

 Database Monitoring—Each database platform contains tools that you can use to
monitor the database and provide useful information.

System Resource Monitoring Tools

Use the following tools to monitor system resources while you perform tests:

 PerfMon—Use to gather performance metrics on Windows-based systems. It is
part of Windows and provides access to all of the Windows performance counters.

 nmon—Use to gather performance statistics on AIX- or Linux-based systems.
Nmon for AIX is included with AIX from 5.3 TL09, AIX 6.1 TL02, and Virtual I/O
Server (VIOS) 2.1, and is installed by default. You can find versions of nmon for
previous versions of AIX and more information about using the tool on IBM
developerWorks. Nmon for Linux is released to open source and is available from
the nmon for Linux wiki.

 rstatd—Gathers performance metrics from a UNIX system kernel. Rpc.rstatd is
shipped with AIX and can be downloaded from the rstatd 4 Linux site for Linux
platforms.

 sysstat—A package of utilities that contains the sar, sadf, iostat, mpstat, and
pidstat commands for AIX and Linux. Sar provides system information related to
I/O, memory, paging, processes, network, and CPU utilization. Sadf formats data
collected by sar. Iostat gives CPU and I/O data disks and TTY devices. Pidstat
reports process data, and mpstat reports global and per-processor data.

 vmstat—Reports statistics about kernel threads, virtual memory, disks, traps, and
CPU activity on UNIX systems.

Bandwidth Monitoring Tools

Use the following monitoring tools to monitor network and HTTP bandwidth while you
perform tests:

 Wireshark—A network protocol analyzer that you can use to capture network traffic
for bandwidth analysis.

 WinPcap—A packet capture and filtering engine that is used by many network
protocol analyzers, including Wireshark.

 HttpWatch—Logs and allows inspection of HTTP and HTTPS traffic. You can use
it to understand the requests and responses between a browser client and a Web
server for bandwidth analysis.

April 2012 Page 38 of 2

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/tprf_tpvmonitor.html
http://www.ibm.com/developerworks/wikis/display/WikiPtype/nmon
http://www.ibm.com/developerworks/wikis/display/WikiPtype/nmon
http://nmon.sourceforge.net/
http://sourceforge.net/projects/rstatd/
http://www.wireshark.org/
http://www.winpcap.org/
http://www.httpwatch.com/

8 Analyzing Results
When you analyze the results of a performance test, remember the goal. The typical goal
of a performance test is to determine an optimal active concurrent user load for an average
implementation, for a specific hardware and software configuration, where end-user
response times meet the criteria specified by the business requirements.

An optimal system environment has sufficient CPU and memory capacities to support
occasional peaks in the number of active users without taxing the system to its limits.

Because your workload mix is based on transaction rates, calculate the actually executed
transaction rates to determine if you have a valid test. Consider the transaction pass-and-
fail rate to determine if you should run your test again.

Graph your results for each load point. A good performance test includes results for
response times, transactions per second, CPU, memory usage/paging, and throughput
(mbps).

The following graph is an example that shows CPU use at different load levels:

Figure 1: Example Results Graph

April 2012 Page 39 of 2

You should include graphical results in a final report that refers to the business
requirements. The final report should document whether performance requirements were
met. If the requirements were not met, the report should outline the potential risks and
discuss future actions that might be taken.

April 2012 Page 40 of 2

9 Rational Resources

9.1 General

Rational Performance Tester Overview

Rational Performance Tester: A resources roadmap for all users

Rational Performance Tester: Find technical developer content and resources for
Rational® Performance Tester.

Redbooks publication: Using Rational Performance Tester Version 7

Rational support: Licensing

9.2 Forum

developerWorks > Rational > Forums > Rational Performance Testing

9.3 IBM Support

Rational Performance Tester Support (You must register.)

Software support - Open service request (You must register.)

April 2012 Page 41 of 2

http://www.ibm.com/software/awdtools/tester/performance/index.html
http://www.ibm.com/developerworks/rational/roadmaps/rptroadmap.html
http://www.ibm.com/developerworks/rational/products/performancetester/
http://www.ibm.com/developerworks/rational/products/performancetester/
http://www.redbooks.ibm.com/abstracts/sg247391.html?Open
https://www-01.ibm.com/software/rational/support/licensing/
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=326
http://www-01.ibm.com/software/awdtools/tester/performance/support/search.html
http://www-01.ibm.com/software/support/probsub.html

April 2012 Page 42 of 2

About Tivoli software from IBM

Tivoli software provides a comprehensive set of offerings and capabilities in support of IBM
Service Management, a scalable, modular approach used to deliver more efficient and
effective services to your business. Meeting the needs of any size business, Tivoli software
enables you to deliver service excellence in support of your business objectives through
integration and automation of processes, workflows, and tasks. The security-rich, open-
standards Tivoli Service Management platform is complemented by proactive operational
management solutions that provide end-to-end visibility and control. It is also backed by
world-class IBM Services, IBM Support, and an active ecosystem of IBM Business
Partners. Tivoli customers and partners can also use each other’s best practices by
participating in independently run IBM Tivoli User Groups around the world—visit
www.tivoli-ug.org

 ®

© Copyright IBM Corporation 2011

IBM United States of America

Produced in the United States of America

All Rights Reserved

IBM Corporation
Route 100
Somers, NY 10589
U.S.A.

IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks
is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks
of Microsoft Corporation in the United States, other countries, or both.

Other company, product and service names may be trademarks or
service marks of others.

References in this publication to IBM products and services do not imply
that IBM intends to make them available in all countries in which IBM
operates.

No part of this document may be reproduced or transmitted in any form
without written permission from IBM Corporation.

Product data has been reviewed for accuracy as of the date of initial
publication. Product data is subject to change without notice. Any
statements regarding IBM’s future direction and intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS
DISTRIBUTED “AS IS” WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT.

IBM products are warranted according to the terms and conditions of the
agreements e.g. IBM Customer Agreement, Statement of Limited
Warrant, International Program License Agreement, etc. under which
they are provided.

The customer is responsible for ensuring compliance with legal
requirements. It is the customer’s sole responsibility to obtain advice of
comptent legal counsel as to the identification and interpretation of any
relevant laws and regulatory requirements that may affect the customer’s
business and any actions the customer may need to take to comply with
such laws. IBM does not provide legal advice or represent or warrant that
its services or products will ensure that the customer is in compliance
with any law or regulation.

April 2012 Page 43 of 43

http://www.ibm.com/legal/copytrade.shtml

	1 Importance of Performance Testing IBM Tivoli Service Management Products
	Best Practices Is a Cooperative Effort

	2 Defining Performance Benchmark Test Objectives
	3 Defining Test Methodology
	3.1 Defining Test Types
	3.1.1 Baseline Measurements
	3.1.2 Performance Load Tests
	3.1.3 Stress Tests
	3.1.4 Endurance Tests
	3.1.5 Sizing and Capacity Tests
	3.1.6 Performance Tuning and Debugging
	3.1.7 Batch Testing

	4 Test Cases, Workloads, and Scenarios
	4.1 Test Case Development
	4.2 Workloads
	4.2.1 Concurrent Users and Simultaneous Users
	4.2.2 Real-time versus Virtual User Mapping
	4.2.3 Think Time and Delay Time

	4.3 Test Scenarios

	5 Benchmark Test Environment Considerations
	5.1 Application Servers
	5.2 Database Servers
	5.3 IBM Tivoli Service Management Products Build Administration Servers
	5.4 Monitoring Considerations

	6 Test Development Essentials for Rational Performance Tester
	6.1 Load Simulation
	6.1.1 Load Test Controller
	6.1.2 Load Test Generators
	6.1.3 Load Test Data

	6.2 Recording a Test
	6.2.1 Before Recording
	6.2.2 Workspace Settings
	6.2.3 Recording
	6.2.3.1 Caching
	6.2.3.2 Transaction names
	6.2.3.3 Comments
	6.2.3.4 Entering search values
	6.2.3.5 Saving two versions of the recording

	6.3 Editing Your New Recording
	6.3.1 Test Flow
	6.3.2 Parameters
	6.3.3 Correlating Values
	6.3.4 Modifying Regular Expressions
	6.3.5 Data Correlation References in Conditional Code
	6.3.6 Removing Unused References
	6.3.7 Text Checks
	6.3.8 Think Time and Delay Time
	6.3.9 Secondary Images
	6.3.10 Custom Code
	6.3.11 Creating References
	6.3.12 Handling Maximo Page Sequence Numbers
	6.3.13 Special Situations
	6.3.13.1 When the pop-up window is recorded
	6.3.13.2 When the occurrence of a pop-up is inconsistent
	6.3.13.3 When an error message box appears

	6.4 Executing a Schedule
	6.4.1 System Clocks
	6.4.2 Eclipse Settings
	6.4.3 Agent Settings
	6.4.3.1 Multiple Agents on the Same Computer
	6.4.3.2 Settings Within the Workspace
	6.4.3.3 Settings on a Windows Agent Computer
	6.4.3.4 Settings on a Linux or AIX Agent Computer
	6.4.3.5 Agent Selection
	6.4.4 Resource Monitoring
	6.4.5 Test Log
	6.4.6 Statistics and Resource Monitoring Interval
	6.4.7 Performance Requirements
	6.4.8 Run Configurations
	6.4.9 User Comments
	6.5.1 Custom Reports
	6.5.2 Analyzing Performance Test Results
	6.5.3 Comparison of All Time Ranges
	6.6.1 Project Cleanup

	7 Troubleshooting Performance Problems
	7.1 Performance Problem Determination
	7.1.1 Problem Determination Techniques
	Application Server
	WebSphere Application Server Logs
	WebSphere Application Server Configuration
	Web Server
	Database Server
	Network
	CPU
	Memory

	7.1.2 Problem Determination Tools
	IBM Tivoli Service Management Products Tools
	Java Core, Heap Dump, and Garbage Collection Utilities
	Remote Connection Utilities
	File Transfer Utilities
	Application Profiling Utilities
	Other Utilities

	7.2 Monitoring the System
	7.2.1 Monitoring Tools
	Application Monitoring Tools
	Middleware Monitoring Tools
	System Resource Monitoring Tools
	Bandwidth Monitoring Tools

	8 Analyzing Results
	9 Rational Resources
	9.1 General
	9.2 Forum
	9.3 IBM Support

